Bioinformatics for grape genus (Vitis L.)
Pangenome: Reference genome = 12X. Aim to explore genes that have not been recorded in the reference genome.
Jaillon O, Aury J M, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. nature, 2007, 449(7161): 463-7.
Velasco R, Zharkikh A, Troggio M, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety[J]. PloS one, 2007, 2(12): e1326.
Xin H, Zhang J, Zhu W, et al. The effects of artificial selection on sugar metabolism and transporter genes in grape[J]. Tree genetics & genomes, 2013, 9(5): 1343-1349.
Da Silva C, Zamperin G, Ferrarini A, et al. The high polyphenol content of grapevine cultivar tannat berries is conferred primarily by genes that are not shared with the reference genome[J]. The Plant Cell, 2013, 25(12): 4777-4788.
Leonardelli L. Grapevine acidity: SVM tool development and NGS data analyses[J]. 2014.
Hyma K E, Barba P, Wang M, et al. Heterozygous mapping strategy (HetMappS) for high resolution genotyping-by-sequencing markers: a case study in grapevine[J]. PloS one, 2015, 10(8): e0134880.
Yang Y, Mao L, Jittayasothorn Y, et al. Messenger RNA exchange between scions and rootstocks in grafted grapevines[J]. BMC plant biology, 2015, 15(1): 1-14.
Ochssner I, Hausmann L, Töpfer R. Rpv14, a new genetic source for Plasmopara viticola resistance conferred by Vitis cinerea[J]. Vitis, 2016, 55(2): 79-81.
Cardone M F, D'Addabbo P, Alkan C, et al. Inter‐varietal structural variation in grapevine genomes[J]. The Plant Journal, 2016, 88(4): 648-661.
Chin C S, Peluso P, Sedlazeck F J, et al. Phased diploid genome assembly with single-molecule real-time sequencing[J]. Nature methods, 2016, 13(12): 1050-1054.
Xu Y, Gao Z, Tao J, et al. Genome-wide detection of SNP and SV variations to reveal early ripening-related genes in grape[J]. PloS one, 2016, 11(2): e0147749.
Yin L, Qu J, Deng S, et al. Phytohormone and genome variations in Vitis amurensis resistant to downy mildew[J]. Genome, 2017, 60(10): 791-796.
Zhou Y, Massonnet M, Sanjak J S, et al. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication[J]. Proceedings of the National Academy of Sciences, 2017, 114(44): 11715-11720.
Tabidze V, Pipia I, Gogniashvili M, et al. Whole genome comparative analysis of four Georgian grape cultivars[J]. Molecular Genetics and Genomics, 2017, 292(6): 1377-1389.
Carbonell-Bejerano P, Royo C, Torres-Pérez R, et al. Catastrophic unbalanced genome rearrangements cause somatic loss of berry color in grapevine[J]. Plant physiology, 2017, 175(2): 786-801.
Drori E, Rahimi O, Marrano A, et al. Collection and characterization of grapevine genetic resources (Vitis vinifera) in the Holy Land, towards the renewal of ancient winemaking practices[J]. Scientific reports, 2017, 7(1): 1-12.
Marroni F, Scaglione D, Pinosio S, et al. Reduction of heterozygosity (ROH) as a method to detect mosaic structural variation[J]. Plant biotechnology journal, 2017, 15(7): 791.
Gambino G, Dal Molin A, Boccacci P, et al. Whole-genome sequencing and SNV genotyping of ‘Nebbiolo’(Vitis vinifera L.) clones[J]. Scientific reports, 2017, 7(1): 1-15.
Canaguier A, Grimplet J, Di Gaspero G, et al. A new version of the grapevine reference genome assembly (12X. v2) and of its annotation (VCost. v3)[J]. Genomics data, 2017, 14: 56.
Mercenaro L, Nieddu G, Porceddu A, et al. Sequence polymorphisms and structural variations among four grapevine (Vitis vinifera L.) cultivars representing Sardinian agriculture[J]. Frontiers in plant science, 2017, 8: 1279.
Developing Useful Genes and Markers for Molecular Breeding System By Omics Analysis in Grapevines (머루 및 포도 비교유전체 연구를 통한 분자육종시스템 구축 및 관련 Omics 통합 DB by 윤해근)
Roach M J, Johnson D L, Bohlmann J, et al. Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay[J]. PLoS genetics, 2018, 14(11): e1007807.
Dal Santo S, Zenoni S, Sandri M, et al. Grapevine field experiments reveal the contribution of genotype, the influence of environment and the effect of their interaction (G× E) on the berry transcriptome[J]. The Plant Journal, 2018, 93(6): 1143-1159.
Laucou V, Launay A, Bacilieri R, et al. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs[J]. PloS one, 2018, 13(2): e0192540.
Patel S, Lu Z, Jin X, et al. Comparison of three assembly strategies for a heterozygous seedless grapevine genome assembly[J]. BMC genomics, 2018, 19(1): 1-12.
Zhou Y, Minio A, Massonnet M, et al. The population genetics of structural variants in grapevine domestication[J]. Nature plants, 2019, 5(9): 965-979.
Magris G, Di Gaspero G, Marroni F, et al. Genetic, epigenetic and genomic effects on variation of gene expression among grape varieties[J]. The Plant Journal, 2019, 99(5): 895-909.
Girollet N, Rubio B, Lopez-Roques C, et al. De novo phased assembly of the Vitis riparia grape genome[J]. Scientific data, 2019, 6(1): 1-8.
Minio A, Massonnet M, Figueroa-Balderas R, et al. Diploid genome assembly of the wine grape Carménère[J]. G3: Genes, Genomes, Genetics, 2019, 9(5): 1331-1337.
Delame M, Prado E, Blanc S, et al. Introgression reshapes recombination distribution in grapevine interspecific hybrids[J]. Theoretical and applied genetics, 2019, 132(4): 1073-1087.
Liang Z, Duan S, Sheng J, et al. Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses[J]. Nature communications, 2019, 10(1): 1-12.
Kim M S, Hur Y Y, Kim J H, et al. Genome resequencing, improvement of variant calling, and population genomic analyses provide insights into the seedlessness in the genus vitis[J]. G3: Genes, Genomes, Genetics, 2020, 10(9): 3365-3377.
Sun L, Li S, Jiang J, et al. New quantitative trait locus (QTLs) and candidate genes associated with the grape berry color trait identified based on a high-density genetic map[J]. BMC Plant Biology, 2020, 20(1): 1-13.
Tanaka K, Hamaguchi Y, Suzuki S, et al. Genomic Characterization of the Japanese Indigenous Wine Grape Vitis sp. cv. Koshu[J]. Frontiers in Plant Science, 2020, 11: 1629.
Massonnet M, Cochetel N, Minio A, et al. The genetic basis of sex determination in grapes[J]. Nature communications, 2020, 11(1): 1-12.
Foria S, Copetti D, Eisenmann B, et al. Gene duplication and transposition of mobile elements drive evolution of the Rpv3 resistance locus in grapevine[J]. The Plant Journal, 2020, 101(3): 529-542.
Holtgräwe D, Rosleff Soerensen T, Hausmann L, et al. A Partially Phase-Separated Genome Sequence Assembly of the Vitis Rootstock ‘Börner’(Vitis riparia× Vitis cinerea) and Its Exploitation for Marker Development and Targeted Mapping[J]. Frontiers in plant science, 2020, 11: 156.
Badouin H, Velt A, Gindraud F, et al. The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication[J]. Genome biology, 2020, 21(1): 1-24.
Vondras A M, Minio A, Blanco-Ulate B, et al. The genomic diversification of grapevine clones[J]. BMC genomics, 2019, 20(1): 1-19.
Ramos M J N, Coito J L, Faísca-Silva D, et al. Portuguese wild grapevine genome re-sequencing (Vitis vinifera sylvestris)[J]. Scientific reports, 2020, 10(1): 1-15.
Patel S, Robben M, Fennell A, et al. Draft genome of the Native American cold hardy grapevine Vitis riparia Michx.‘Manitoba 37’[J]. Horticulture research, 2020, 7(1): 1-13.
Yang Y, Cuenca J, Wang N, et al. A key ‘foxy’aroma gene is regulated by homology-induced promoter indels in the iconic juice grape ‘Concord’[J]. Horticulture research, 2020, 7(1): 1-12.
Zhong H, Zhang F, Zhou X, et al. Genome-wide identification of sequence variations and SSR marker development in the Munake grape cultivar[J]. Frontiers in Ecology and Evolution, 2021, 9: 190.
Sivan A, Rahimi O, Lavi B, et al. Genomic evidence supports an independent history of Levantine and Eurasian grapevines[J]. Plants, People, Planet, 2021.
Calderón L, Mauri N, Muñoz C, et al. Whole genome resequencing and custom genotyping unveil clonal lineages in ‘Malbec’grapevines (Vitis vinifera L.)[J]. Scientific reports, 2021, 11(1): 1-11.
Wang Y, Xin H, Fan P, et al. The genome of Shanputao (Vitis amurensis) provides a new insight into cold tolerance of grapevine[J]. The Plant Journal, 2021, 105(6): 1495-1506.
Cochetel N, Minio A, Massonnet M, et al. Diploid chromosome-scale assembly of the Muscadinia rotundifolia genome supports chromosome fusion and disease resistance gene expansion during Vitis and Muscadinia divergence[J]. G3, 2021, 11(4): jkab033.
Vondras A M, Lerno L, Massonnet M, et al. Rootstock influences the effect of grapevine leafroll‐associated viruses on berry development and metabolism via abscisic acid signalling[J]. Molecular Plant Pathology, 2021.
Zou C, Massonnet M, Minio A, et al. Multiple independent recombinations led to hermaphroditism in grapevine[J]. Proceedings of the National Academy of Sciences, 2021, 118(15).
Park M, Vera D, Kambrianda D, et al. Chromosome-level genome sequence assembly and genome-wide association study of Muscadinia rotundifolia reveal the genetics of 12 berry-related traits[J]. Horticulture research, 2022, 9.
Shirasawa K, Hirakawa H, Azuma A, et al. De novo whole-genome assembly in an interspecific hybrid table grape,‘Shine Muscat’[J]. DNA Research, 2022, 29(6): dsac040.